Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.
Image credit: User:Melchoir |
The real number denoted by the recurring decimal 0.999… is exactly equal to 1. In other words, "0.999…" represents the same number as the symbol "1". Various proofs of this identity have been formulated with varying rigour, preferred development of the real numbers, background assumptions, historical context, and target audience.
The equality has long been taught in textbooks, and in the last few decades, researchers of mathematics education have studied the reception of this equation among students, who often reject the equality. The students' reasoning is typically based on one of a few common erroneous intuitions about the real numbers; for example, a belief that each unique decimal expansion must correspond to a unique number, an expectation that infinitesimal quantities should exist, that arithmetic may be broken, an inability to understand limits or simply the belief that 0.999… should have a last 9. These ideas are false with respect to the real numbers, which can be proven by explicitly constructing the reals from the rational numbers, and such constructions can also prove that 0.999… = 1 directly.
View all selected articles | Read More... |
Here a polyhedron called a truncated icosahedron (left) is compared to the classic Adidas Telstar–style football (or soccer ball). The familiar 32-panel ball design, consisting of 12 black pentagonal and 20 white hexagonal panels, was first introduced by the Danish manufacturer Select Sport, based loosely on the geodesic dome designs of Buckminster Fuller; it was popularized by the selection of the Adidas Telstar as the official match ball of the 1970 FIFA World Cup. The polyhedron is also the shape of the Buckminsterfullerene (or "Buckyball") carbon molecule initially predicted theoretically in the late 1960s and first generated in the laboratory in 1985. Like all polyhedra, the vertices (corner points), edges (lines between these points), and faces (flat surfaces bounded by the lines) of this solid obey the Euler characteristic, V − E + F = 2 (here, 60 − 90 + 32 = 2). The icosahedron from which this solid is obtained by truncating (or "cutting off") each vertex (replacing each by a pentagonal face), has 12 vertices, 30 edges, and 20 faces; it is one of the five regular solids, or Platonic solids—named after Plato, whose school of philosophy in ancient Greece held that the classical elements (earth, water, air, fire, and a fifth element called aether) were associated with these regular solids. The fifth element was known in Latin as the "quintessence", a hypothesized uncorruptible material (in contrast to the other four terrestrial elements) filling the heavens and responsible for celestial phenomena. That such idealized mathematical shapes as polyhedra actually occur in nature (e.g., in crystals and other molecular structures) was discovered by naturalists and physicists in the 19th and 20th centuries, largely independently of the ancient philosophies.
The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.
Project pages
Essays
Subprojects
Related projects
Algebra | Arithmetic | Analysis | Complex analysis | Applied mathematics | Calculus | Category theory | Chaos theory | Combinatorics | Dynamic systems | Fractals | Game theory | Geometry | Algebraic geometry | Graph theory | Group theory | Linear algebra | Mathematical logic | Model theory | Multi-dimensional geometry | Number theory | Numerical analysis | Optimization | Order theory | Probability and statistics | Set theory | Statistics | Topology | Algebraic topology | Trigonometry | Linear programming
Mathematics (books) | History of mathematics | Mathematicians | Awards | Education | Literature | Notation | Organizations | Theorems | Proofs | Unsolved problems
General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|
| |||
Algebra | Analysis | Geometry and topology | Applied mathematics |
ARTICLE INDEX: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) |
MATHEMATICIANS: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |